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Abstract—An efficient compressed sensing scheme requires
a small number of measurements, a fast recovery algorithm,
a small approximation error, and little or no randomness. In
2014, Iwen presented two compressed sensing schemes with near-
optimal runtime, based on binary matrices. We combine ideas
from these two schemes with a classical construction, used by
Porat and Rothschild for near-optimal group testing, to produce
a new compressed sensing scheme requiring significantly less
randomness without compromising runtime. We give two variants
of this compressed sensing scheme: the first is measurement-
optimal, and the second is deterministic.

I. INTRODUCTION

A. Context

Compressed sensing [1]–[3] concerns the problem of recov-
ering an approximately sparse vector from a relatively small
number of linear measurements. The unknown vector x ∈ RN
we wish to recover is approximately k-sparse, where k � N .
We take m non-adaptive linear measurements using a mea-
surement matrix M ∈ Cm×N to yield a sketch y = Mx,
and then use a recovery algorithm ∆ to obtain an approxi-
mation x̂ ∈ RN to x from y. We would like the compressed
sensing scheme (M,∆) to satisfy all the following properties:
(P1) the number of measurements m is small, ideally

O(k polylogN).
(P2) the recovery algorithm ∆ is fast, ideally having a run-

time of O(k polylogN).
(P3) the error of the approximation x − x̂ is small, ideally

achieving a mixed instance optimal error guarantee [4,
§8] of the form

‖x− x̂‖p ≤ Ck
1/p−1/q min

k-sparse xk

‖x− xk‖q (1)

for some real constants p, q, C satisfying 1 ≤ q ≤ p.
(P4) the number of random bits required to construct the

measurement matrix M is small, ideally zero (in which
case M is a deterministic matrix).

We will refer to (1) as an `p/`q error guarantee.
Uniform and nonuniform recovery models. When ran-

domness is incorporated in accordance with property (P4),
the measurement matrix M is randomly chosen from some
specified distribution. There are two principal probabilistic
models for the approximation error guarantee (1) to hold: the
uniform and the nonuniform recovery model. In the uniform
recovery model, for a single randomly-chosen matrixM, with

high probability the error guarantee is satisfied for all x ∈ RN .
For the nonuniform recovery model, for each fixed x ∈ RN
and for a matrix M chosen randomly and independently for
each x, with high probability the error guarantee is satisfied.

In this paper, we provide a compressed sensing scheme
which satisfies each of properties (P1) to (P4) under the
nonuniform recovery model.

B. Related Work

A compressed sensing scheme which achieves an `1/`1,
`2/`1, or `2/`2 error guarantee under the nonuniform re-
covery model must have a growth rate of Ω(k log(N/k))
for both the number of measurements and the runtime [5],
[6]. There has been considerable work attempting to meet
these bounds; we summarize the principal previous results
in Table I. These schemes have either the best performance
for at least one of the four properties (P1)–(P4) or a strong
performance across all four. In addition to the compressed
sensing schemes summarized in Table I and the references
therein, we also refer the reader to [7]–[11] for previous work
on deterministic schemes, to [12]–[14] for previous work on
compressed sensing with derandomization, and to [15], [16]
for background on combinatorial group testing.

C. Our Contributions

Our main contribution (Corollary 3) is a compressed sens-
ing scheme with a nonuniform `2/`1 error guarantee. This
scheme performs well across all four properties (P1)–(P4)
simultaneously: few measurements, fast recovery algorithm,
small approximation error, and few random bits. Both the
number of measurements and the recovery algorithm run-
time are O(k log k · logN). When k = O

(
N1−ξ) for an

arbitrary positive constant ξ, these growth rates are within
a factor of O(log k) of the lower bounds of Section I-B.
Furthermore, the runtime is equal to that of the fastest known
recovery algorithm [17, Theorem 5 (3)], and yet the number
of random bits required is reduced from O

(
Nk2 logN

)
to

O (log k · log (k logN)).
A first variant of Corollary 3 (Corollary 4) is a scheme

using only O(k logN) measurements, at the cost of increased
runtime and more random bits. When k = O

(
N1−ξ) for an

arbitrary positive constant ξ, the number of measurements



is O (k log (N/k)), which is order-optimal. To our knowl-
edge, this scheme requires fewer random bits than all other
measurement-optimal schemes satisfying an `p/`q guarantee.

A second variant of Corollary 3 (Corollary 5) is a deter-
ministic scheme which, to our knowledge, achieves a faster
runtime than all other deterministic schemes satisfying an
`p/`q guarantee.

Our constructions are similar to those of [17], in that we
subsample rows of an incoherent binary matrix whose row
count grows sublinearly. Indeed, certain aspects of our results
could be inferred from [17]. However, our innovation lies in
connecting in novel ways various ideas from the information
theory literature involving compressed sensing, coding theory,
and combinatorial group testing. In particular, we shall show
that methods from Porat and Rothschild’s construction of a
non-adaptive combinatorial group testing scheme [18] can be
modified to produce an incoherent binary matrix that can be
seen to be optimal by means of the Johnson bound [19] of
classical coding theory.

The compressed sensing schemes of Corollaries 3, 4, 5
each satisfy an `2/`1 error guarantee. We expect that these
schemes can be modified in a straightforward way to account
for post-measurement noise while still satisfying an `2/`1 error
guarantee and without affecting performance in relation to
properties (P1)–(P4).

II. INGREDIENTS OF THE CONSTRUCTION

Throughout, we will write [N ] as {0, 1, . . . , N − 1}. Given
a vector x ∈ RN and k ∈ [N ], we denote by xk a best k-term
approximation to x (namely x with all but k of the largest-
magnitude terms set to zero). We consider rows and columns
of matrices to be indexed from 0.

A. Incoherent Binary Matrices

We firstly introduce incoherent binary matrices, which will
be used in the construction of the measurement matrix M.
See [27] for an overview of the relationship of these binary
matrices to matrices with the restricted isometry property,
error-correcting codes with large distance, incoherent spherical
codes, list-decodable codes, disjunct matrices, and combina-
torial designs.

Definition 1 ( [28, Definition 4]). Let N,K,α be integers
which satisfy 1 ≤ α < K < N . An m × N binary {0, 1}
matrixMC is (K,α)-coherent if each column ofMC contains
at least K ones and each pair of distinct columns of MC has
dot product at most α.

[19, Theorem 3] introduces an auxiliary function associated
with the well-known problem of determining the maximum
number A(n,w, d) of codewords in a length n binary code
of distance d and constant weight w, and derives an upper
bound on this function using elementary methods. By making
a connection between this auxiliary function and a (K,α)-
coherent matrix, we obtain the following lower bound on the
row count of such a matrix.

Theorem 1. Let MC ∈ {0, 1}m×N be a (K,α)-coherent
matrix. Then

m ≥ NK2

(N − 1)α+K
= Ω

(
K2

α

)
.

Kautz and Singleton, in a study of nonrandom binary
superimposed codes, give a strongly explicit construction1 of
a certain disjunct matrix by transforming a Reed-Solomon
code [29] into a binary code [30, Section V B]. DeVore [31,
Theorem 3.1] uses the same construction to produce matrices
with the restricted isometry property. By reformulating the
Kautz-Singleton result, we obtain the following construction
for a (K, logK N − 1)-coherent matrix.

Theorem 2. Let N,K,α be positive integers satisfying N >
K > α = logK N − 1. Then we can construct a (K,α)-
coherent matrixMKS of size K2×N . Furthermore, the matrix
comprises exactly K blocks of K rows, each column of each
row block containing exactly one 1. The position of this 1 can
be located in O(logK N) using Horner’s rule.

Porat and Rothschild give a derandomized probabilistic
construction of a linear code meeting the Gilbert-Varshamov
bound [32], [33], and produce from this an explicit con-
struction of a disjunct matrix suitable for group testing
whose row count is close to optimal [18]. Cheraghchi [27,
Section III] uses the same construction to produce matri-
ces with the restricted isometry property. By interpreting
the Porat-Rothschild result in the framework of (K,α)-
coherent matrices, we obtain the following construction for
a (Θ (K) ,Θ(logN))-coherent matrix, having order-optimal
row count by Theorem 1.

Theorem 3. Let N,K,α be positive integers satisfying N >
K > α = Ω(logN). Then we can construct a (K,α)-coherent
matrix MPR of size m×N where m = Θ

(
K2/α

)
. Further-

more, the matrix comprises exactly K blocks of Θ (K/α) rows,
each column of each row block containing exactly one 1.

B. Columnwise Kronecker Product with Bit-Test Matrix

Definition 2. The columnwise Kronecker product of matrices
B ∈ Rb×N and R ∈ Rt×N , denoted B ~ R, is the bt × N
matrix whose entries are given by (B ~R)ti+v,j = Bi,jRv,j .

Definition 3. The N th bit-test matrix BN ∈
{0, 1}(1+dlog2Ne)×N is the binary {0, 1} matrix whose
jth column (read from bottom to top) equals the binary
representation of j followed by 1.

Remark 1. Let BN = (bi)
dlog2Ne
i=0 be the N th bit-test matrix,

and let R = (rj)
t−1
j=0 be a t × N matrix. The vector yid =

(BN~R)x comprises exactly 1+dlog2Ne blocks of t entries,
the ith block being (bi~R)x ∈ Rt. Furthermore, (yid)ti+j =
〈bi~ rj ,x〉 = ((bi ~R)x)j for each i and each j. This will
be used in Line 4 of Algorithm 1.

1A construction of an m×N matrix is strongly explicit if each column of
the matrix can be constructed in time poly(m), and explicit if each column
can be constructed in time poly(m,N ).



Paper D/U/N # m of measurements Runtime of ∆ # random bits Error Guarantee
[9], [20] D k2−ε LP Deterministic `2/`1

Herein, Corollary 5 D k2 log2 N k2 log2 N Deterministic `2/`1
[21] U k log(N/k) LP O (k log(N/k) · log (k log (N/k))) `2/`1
[22] U k log≥2 N k2 log≥2 N Ω(N) `2/`1
[23] U k logN k>1 log≥2 N Ω(N) `1/`1

[24, Theorem 4] N k log3 N k log3 N Ω(N) `2/`2
[25, Theorem 1.1] N k log(N/k) k log≥2 N Ω(N) `2/`2
[26, Theorem 1.2] N k log(N/k) k log2(N/k) Ω(N) `2/`2

[17, Theorem 5 (2)] N k log2 N k log2 N O (log k · log (k logN)) =∗ O(log2 k) `2/`1
[17, Theorem 5 (3)] N k log k · logN k log k · logN O

(
Nk2 logN

)
`2/`1

∗ follows from the assumption of [17] that k = Ω(logN)
Herein, Corollary 3 N k log k · logN k log k · logN O (log k · log (k logN)) `2/`1
Herein, Corollary 4 N k logN N logN O (logN · log (k logN)) `2/`1

TABLE I
SUMMARY OF THE PRINCIPAL PREVIOUS RESULTS AND THE RESULTS OBTAINED IN THIS PAPER. THE COLUMN “D/U/N” INDICATES WHETHER THE

COMPRESSED SENSING SCHEME APPLIES TO THE DETERMINISTIC (D) MODEL, THE UNIFORM (U) RECOVERY MODEL OR THE NONUNIFORM (N)
RECOVERY MODEL. THE MEASUREMENT AND RUNTIME COMPLEXITIES ARE EACH SUBJECT TO O-NOTATION, SUPPRESSED FOR BREVITY.

“LP” DENOTES THE TIME COMPLEXITY OF SOLVING A LINEAR PROGRAM OF N VARIABLES.

III. MAIN RESULTS

A. Overview of Techniques

The compressed sensing scheme that we will present in
Corollary 3 combines the advantages of two schemes S1, S2

proposed by Iwen [17, Theorem 5 (2) and Theorem 5 (3)].
Both schemes S1, S2 use the recovery algorithm ∆ given

in Algorithm 1 below. Their measurement matrix takes the

form M =

[
Mid

Mest

]
, where Mid is an identification matrix

and Mest is an estimation matrix.
The estimation matrix Mest is obtained by randomly sub-

sampling (with replacement) blocks of rows from a Kautz-
Singleton (K,α)-coherent matrix MKS. The identification
matrix Mid is the columnwise Kronecker product of the N th

bit-test matrix with a binary matrix obtained by randomly
subsampling (with replacement) rows from some (K,α)-
coherent matrix MC.

In scheme S1, the matrix MC is fixed to be MKS, and the
required amount of randomness is reduced by subsampling
on row blocks rather than on individual rows. In contrast, in
scheme S2, the matrix MC is itself randomly generated [17,
Theorem 2], and random subsampling is then carried out on
individual rows. The row count of this randomly generated
matrix MC meets the lower bound in Theorem 1, and in
comparison with S1 requires fewer measurements and gives
faster runtime, but the process of random subsampling on
individual rows requires more random bits.

We will show in Corollary 3 that, by instead fixing MC to
be a Porat-Rothschild matrixMPR and randomly subsampling
blocks of rows, we can retain the advantages of S2 over S1

(fewer measurements and faster runtime) without incurring the
penalty of more random bits.

B. Recovery Algorithm: Identification, Estimation, Pruning

We use the recovery algorithm of Iwen [17, Algorithm 1],
which we present here as Algorithm 1. For each n ∈ [N ], we
write Mest(n) to represent the submatrix of Mest comprising
the rows of Mest whose entry in the nth column is 1.

This algorithm has three phases: identification, estimation,
and pruning. The identification phase uses the identification
measurement yid = Mid x to identify a set T ⊆ [N ]
containing the indices of the entries of x having largest
magnitude, potentially with some false positives. Then the es-
timation phase uses the estimation matrixMest, the estimation
measurement yest =Mest x, and the index set T to construct
a vector x̂ ∈ RN by estimating the entries xn at only the
indices n ∈ T . Finally, the pruning phase sets to 0 all but 2k
entries of x̂ with the largest magnitude so that this modified
approximation x̂ to x satisfies an `2/`1 guarantee.

In the next three subsections, we describe the identification,
estimation, and pruning phases in more detail.

C. Identification

We randomly subsample (with replacement) blocks of rows
from a Porat-Rothschild (K,α)-coherent matrix MPR (see
Theorem 3) to generate a random binary matrix R, and then
construct the identification matrix Mid as the columnwise
Kronecker product BN~R. The properties of the identification
matrix and the performance of the identification phase of
Algorithm 1 are described in Corollary 1 below, using the
following lemma derived by combining results given in [17,
Section 4.1].

Lemma 1. Let MC be an m × N (K,α)-coherent matrix
comprising K blocks of m

K rows, each column of each block
containing exactly one 1. Let ε ∈ (0, 1], σ ∈

[
2
3 , 1
)
, x ∈ RN

and k ∈ [K ε
14α ]. Construct a matrix R by randomly choosing

with replacement at least 7
6 ln

(
2k/ε
1−σ

)
of the K blocks ofMC,

and let Mid = BN ~R. Then, with probability at least σ, the
identification phase of Algorithm 1 recovers from the identifi-
cation measurement yid =Mid x the set T of indices n ∈ [N ]
for which

|xn| ≥
4ε

k

∥∥x− xk/ε
∥∥
1
.

Furthermore, the number of random bits used to construct R
is O

(
log
(

2k/ε
1−σ

)
· logK

)
, and both the number of measure-



Algorithm 1 Recovery algorithm for approximating x [17]

Input: M =

[
BN ~R
Mest

]
, y =

[
yid

yest

]
=Mx, and k,

where R has size t×N
Output: an approximation to x containing at most 2k
nonzero terms

1: Initialize T ← ∅, x̂← 0 ∈ RN , v← 0 ∈ Rdlog2Ne

IDENTIFICATION PHASE

2: for j from 0 to t− 1 do
3: for i from 1 to dlog2Ne do
4: if |yti+j | > |yj − yti+j | then
5: vi ← 1
6: else
7: vi ← 0
8: end if
9: end for

10: n←
∑dlog2Ne
i=1 vi2

i

11: T ← T ∪ {n}
12: end for

ESTIMATION PHASE

13: for each n in T do
14: x̂n ← median of the entries of Mest(n)x
15: end for

PRUNING PHASE

16: Sort by magnitude the w nonzero entries of x̂ (where w ≤
|T |) so that |x̂n1 | ≥ |x̂n2 | ≥ · · · ≥ |x̂nw |

17: for j from min(2k + 1, w) to w do
18: x̂nj

← 0
19: end for
20: Output: x̂

ments made byMid and the runtime of the identification phase
are O

(
m
K log

(
2k/ε
1−σ

)
· logN

)
.

Take α = Θ(logN) and K = αkε = Θ
(
k
ε logN

)
and

MC =MPR and σ = 0.99 in Lemma 1 to obtain the following
properties of the identification matrix and the performance of
the identification phase of our scheme. Recall from Theorem 3
that the matrixMPR comprises exactly K blocks of Θ (K/α)
rows, each column of each row block containing exactly one 1.

Corollary 1. Let ε ∈ (0, 1], x ∈ RN and k ∈ [N ]. LetMPR be
a Porat-Rothschild

(
Θ
(
k
ε logN

)
,Θ(logN)

)
-coherent matrix.

Construct a matrix R by randomly choosing with replacement
at least 7

6 ln
(
200kε

)
of the Θ(kε logN) blocks of Θ

(
k
ε

)
rows

of MPR, and let Mid = BN ~ R. Then, with probability at
least 0.99, the identification phase of Algorithm 1 recovers
from the identification measurement yid =Mid x the set T of
indices n ∈ [N ] for which

|xn| ≥
4ε

k

∥∥x− xk/ε
∥∥
1
.

Furthermore, the number of random bits used to construct
R (and hence Mid) is O

(
log
(
k
ε

)
· log

(
k
ε logN

))
, and both

the number of measurements made by the measurement ma-

trix Mid and the runtime of the identification phase are
O
(
k
ε log

(
k
ε

)
· logN

)
.

D. Estimation
The estimation matrix Mest is generated by randomly

subsampling (with replacement) blocks of rows from a Kautz-
Singleton (K,α)-coherent matrix MKS (see Theorem 2). The
properties of the estimation matrix and the performance of the
estimation phase of Algorithm 1 are described in Corollary 2
below, using the following lemma derived by combining
results given in [17, Section 4.2].

Lemma 2. Let MC be an m × N (K,α)-coherent matrix
comprising K blocks of m

K rows, each column of each block
containing exactly one 1. Let ε ∈ (0, 1], σ ∈

[
2
3 , 1
)
, x ∈

RN , k ∈ [K ε
14α ], and let T be a subset of [N ]. Construct a

matrix Mest by randomly choosing with replacement at least
28.56 ln

(
2|T |
1−σ

)
of the K blocks ofMC. Then, with probability

at least σ, the estimation phase of Algorithm 1 estimates a
vector x̂ satisfying

|x̂n − xn| ≤
ε

k

∥∥x− x(k/ε)

∥∥
1

for all n ∈ T .

Furthermore, the number of random bits used to construct
Mest is O

(
log
(

2|T |
1−σ

)
logK

)
, and the number of rows of

the estimation matrixMest is O
(
m
K log

(
2|T |
1−σ

))
. The runtime

of the estimation phase is O
(
|T | log

(
2|T |
1−σ

)
logK N

)
in the

case that MC is a Kautz-Singleton (Θ(K),Θ(logK N))-
coherent matrix MKS; the runtime of the estimation phase
is O (|T | log |T |) in the case that MC is a Porat-Rothschild
(Θ(K),Θ(logN))-coherent matrix2 MPR.

We shall apply Lemma 2, taking T to be the set of indices
identified in the identification phase of our scheme. Take
α = Θ

(
logk/εN

)
and K = αkε = Θ

(
k
ε logk/εN

)
and

MC = MKS and σ = 0.99, so that |T | = Θ
(
k
ε log

(
k
ε

))
by

Corollary 1 and Line 2 of Algorithm 1. We then obtain the
following properties of the estimation matrix and performance
of the estimation phase of our scheme.

Corollary 2. Let ε ∈ (0, 1], x ∈ RN , k ∈ [N ], and let
T be the set of indices identified in the identification phase,
as described in Corollary 1. Let MKS be a Kautz-Singleton(

Θ
(
k
ε logk/εN

)
,Θ(logk/εN)

)
-coherent matrix. Construct

a matrixMest by randomly choosing with replacement at least
28.56 ln (200|T |) of the Θ

(
k
ε logN

)
blocks of Θ

(
k
ε logN

)
rows of MKS. Then, with probability at least 0.99, the esti-
mation phase of Algorithm 1 estimates a vector x̂ satisfying

|x̂n − xn| ≤
ε

k

∥∥x− x(k/ε)

∥∥
1

for all n ∈ T .

Furthermore, the number of random bits used to construct
Mest is O

(
log
(
k
ε

)
· log

(
k
ε logN

))
, and the runtime of the

estimation phase is O
(
k
ε log

(
k
ε

)
· logN

)
.

2This assumes that the locations of the nonzero entries of each column of
MPR are precomputed. A similar assumption is not needed when MC =
MKS because of the strongly explicit construction of MKS: see discussion
prior to Theorem 2.



E. Pruning

We summarize the overall performance of our scheme in
Corollary 3, using the following lemma given in [17, Theorem
5]. We then show that this scheme satisfies an `2/`1 guarantee.

Lemma 3. Let ε ∈ (0, 1], σ ∈
[
2
3 , 1
)
, x ∈ RN , and k ∈ [N ].

Construct a matrix R randomly according to Lemma 1, and
an estimation matrix Mest randomly according to Lemma 2
(not necessarily from the same (K,α)-coherent matrix MC).
Then, with probability at least σ2, Algorithm 1 returns a vector
x̂ whose approximation error satisfies

‖x− x̂‖2 ≤ ‖x− xk‖2 +
22ε√
k

∥∥x− xk/ε
∥∥
1
. (2)

Remark 2. The following modification of Lemma 3 gives
a compressed sensing scheme satisfying a nonuniform `2/`1
guarantee. Take ε = 1 in Lemma 3, and replace the param-
eter k by 2k. The resulting approximation error guarantee
satisfies

‖x− x̂‖2 ≤ ‖x− x2k‖2 +
22√
2
√
k
‖x− x2k‖1

for each fixed x ∈ RN . The first term on the right side can
be bounded using ‖x− x2k‖2 = ‖(x− xk)− (x− xk)k‖2
≤ 1√

k
‖x− xk‖1 from [3, Proposition 2.3], and the second

term can be bounded using ‖x− x2k‖1 ≤ ‖x− xk‖1 . There-
fore this scheme satisfies a nonuniform `2/`1 error guarantee.

Apply the modification of Lemma 3 described in Remark 2
with σ = 0.99, taking the matrixR to be constructed randomly
according to Corollary 1, and the estimation matrix Mest to
be constructed randomly according to Corollary 2. We then
obtain the following overall performance of our scheme.

Corollary 3. Let x ∈ RN and k ∈ [N ]. Construct a ma-
trix R randomly according to Corollary 1, and a matrixMest
randomly according to Corollary 2. Then, with probability at
least 0.992, Algorithm 1 (with the parameter k replaced by
2k as in Remark 2) returns a vector x̂ whose approximation
error satisfies a nonuniform `2/`1 guarantee. Furthermore,
the number of random bits used to construct the measurement

matrix M =

[
BN ~R
Mest

]
is O (log k · log (k logN)), and

both the number of measurements made byM and the runtime
of Algorithm 1 are O (k log k · logN).

IV. MEASUREMENT-OPTIMAL VARIANT

If we omit the identification measurement and the identifi-
cation phase of Algorithm 1, and apply the estimation phase
directly with T = [N ], then we obtain the measurement-
optimal variant of Corollary 3 stated in Corollary 4. The
measurement and runtime performance of this scheme matches
that of [17, Theorem 5 (1)] but uses fewer random bits. To
obtain this, apply the modification of Lemma 3 described in
Remark 2, where Lemma 2 is called with α = Θ (logN) and
ε = 1 and K = Θ (k logN) and MC = MPR and σ = 0.99
and T = [N ].

Corollary 4. Let x ∈ RN and k ∈ [N ]. Let MPR be
a Porat-Rothschild (Θ (k logN) ,Θ(logN))-coherent matrix.
Construct a measurement matrix M by randomly choosing
with replacement at least 28.56 ln (200N) of the Θ (k logN)
blocks of Θ(k) rows. Then, with probability at least 0.99,
Algorithm 1 (with the parameter k replaced by 2k as in Re-
mark 2) returns a vector x̂ whose approximation error satisfies
a nonuniform `2/`1 guarantee. Furthermore, the number of
random bits used to construct M is O (logN log (k logN)),
the number of measurements made by the measurement matrix
M is O (k logN), and the runtime 3 is O (N logN).

V. DETERMINISTIC VARIANT

Finally, we provide a deterministic variant of Corollary 3,
using a variant 4 of Algorithm 1 and [28, Theorem 4]. Essen-
tially, we takeR to be a Porat-Rothschild matrixMPR (instead
of generated by randomly subsampling rows from MPR),
and Mest to be a Kautz-Singleton matrix MKS. This gives
a deterministic guarantee at the cost of more measurements
and slower runtime.

Corollary 5. Let x ∈ RN and k ∈ [N ]. Let
R = MPR be a Porat-Rothschild (Θ (k logN) ,Θ (logN))-
coherent matrix, and Mest = MKS be a Kautz-Singleton
(Θ (k logkN) ,Θ(logkN))-coherent matrix. Then the mea-

surement matrix M =

[
BN ~MPR

MKS

]
and the recovery

algorithm of Algorithm 1 (with the parameter k replaced by
2k as in Remark 2, and certain lines modified as in Footnote 4)
produces a deterministic compressed sensing scheme satisfying
an `2/`1 error guarantee. Both the number of measurements
made by the measurement matrix M and the runtime of
Algorithm 1 are O(k2 log2N).

VI. CONCLUSION AND FURTHER RESEARCH

We have presented a nonuniform compressed sensing
scheme (Corollary 3) for which both the number of measure-
ments and the runtime are within a factor of O(log k) of the
known lower bound Ω(k logN/k).

As shown in Table I, the technique of [26, Theorem 1.2]
achieves an order-optimal number of measurements, but its
runtime is only within a factor of O(logN/k) of the lower
bound. It remains as an important open question whether there
are nonuniform compressed sensing schemes with an `1/`1,
`2/`1, or `2/`2 error guarantee for which both the number of
measurements and the runtime are order-optimal.
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3assuming the locations of the nonzero entries of each column ofMPR are
precomputed.

4 T is initialized as a multiset in Line 1; Line 11 is changed from union
to multiset union: “T ← T ] {n}”; Line 13 is changed to “for each n in T
with multiplicity greater than K/2 do”. See also [28, Algorithm 1]
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